Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network


Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network

Dhal, S.; Chatterjee, S.; Facsko, S.; Möller, W.; Böttger, R.; Satpati, B.; Ratha, S.; Hübner, R.

Nanostructured materials are gaining increasing importance due to their unique properties resulting from the high surface to volume ratio and the altered characteristics of the nanoscaled building blocks. The properties of these materials depend strongly on their microstructure and thus can be controlled by inducing transformation on the nanoscale. In this work, a simple low energy ion beam irradiation technique is presented that can be used to effectively weld the hydrogen titanate nanotubes into a large-scale network of nanowires. By varying the ion fluence, we are able to fragment the entire nanowire network into uniformly distributed nanocrystalline particles with an average size of 5 ± 2 nm. Three-dimensional computer simulations of the ion irradiation effects on the nanotubes reproduce most of the experimental findings and thus confirm that the early development of the system is governed by atomic collision processes. Our study demonstrates that the selective use of ion irradiation can transform metal-oxide nanotubes into large-scale welded networks of nanowires and further into nanocrystalline particles through nucleation and growth.

Keywords: ion irradiation; titanium oxide; nanowelding; nanoparticle

Related publications

Permalink: https://www.hzdr.de/publications/Publ-25425
Publ.-Id: 25425