Magnetic field induced tunneling and relaxation between orthogonal configurations in solids and molecular systems


Magnetic field induced tunneling and relaxation between orthogonal configurations in solids and molecular systems

Averkiev, N. S.; Bersuker, I. B.; Gudkov, V. V.; Zhevstovskikh, I. V.; Baryshnikov, K. A.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Korostelin, Y. V.

We report the effect of magnetic field induced quantum tunneling and relaxation transitions between orthogonal configurations in polyatomic systems where no tunneling is expected. Typical situations of this kind occur in molecular systems and local centers in crystals in ground and excited electronic T states, subject to the T⊗e problem of the Jahn-Teller effect, where the wave functions of the three tetragonally distorted configurations are orthogonal. A detailed microscopic theory of this effect shows how the magnetic field violates the orthogonality between the latter allowing for tunneling and relaxations, which decrease in strong fields due to the induced decoherence. The novel effect is demonstrated experimentally as a big, sharp peak in ultrasound attenuation by Cr2+ centers in ZnSe:Cr2+ in the magnetic field B = 0.15 T at the temperature below 8 K. It may influence a variety of magnetic, electronic, and photonic properties of any system in an electronic T state.

Permalink: https://www.hzdr.de/publications/Publ-26165
Publ.-Id: 26165