Drone-borne mineral exploration in Central-West Greenland


Drone-borne mineral exploration in Central-West Greenland

Zimmermann, R.; Rosa, D.; Gloaguen, R.

During the last two field seasons, two different type of Unmanned Aerial Systems were tested and evaluated for mineral mapping in Central-West Greenland. A fixed wing system turned out to be more suitable as large areas can be covered faster and more efficiently.
In 2017, a sensefly ebeePlus fixed-wing system with a 4 channel multispectral Sequoia camera (4 channels in VIS-NIR with 1.2 MP + 16 MP RGB camera) was deployed. Flight altitude was set to achieve 11cm ground sampling distance (GSD). Processing followed in-house routines using Structure-from-Motion photogrammetry to get Digital Surface Models (DSM) and geometrically corrected orthomosaics. In total 6.4 km2 of the VMS showings in Kangiusap Kuua at Svartenhuk were covered. The VMS showings are hosted in the Nukavsak Fm of the Paleoproterozoic Karrat group. In certain stratigraphic horizon within the meta-turbidites, basalt flows with associated sulphide-rich sea-floor alteration occur. Flight plans were set to cover both alteration and host-rock. A validation dataset includes sampling and spectral characterisation of selected hand specimen.
Gossans are easily mappable by integrated morphological and spectral analysis as they form ridges with a distinct iron feature. Moreover, traces of fractures and faults, their spatial distribution and relation to the altered horizon is retrieved.
This further highlights the capability of drone-borne application for high-resolution reconnaissance mapping within short turn-around times. Intermediate insights from the project Multi-sensor drones for geological mapping (MULSEDRO) will facilitate the application of drones under unfavourable conditions.

  • Lecture (Conference)
    33rd Nordic Geological Winter Meeting, 10.-12.01.2018, København, Danmark

Permalink: https://www.hzdr.de/publications/Publ-26365
Publ.-Id: 26365