Dual energy CT: Benefits for proton therapy planning and beyond


Dual energy CT: Benefits for proton therapy planning and beyond

Richter, C.; Wohlfahrt, P.; Möhler, C.; Greilich, S.

For about a decade, dual-energy CT (DECT) has been clinically available, mainly for radiology applications. In contrast, in the field of radiotherapy DECT has gained relevant interest over the last few years and here clinical use is still far away from being clinical standard. In this lecture benefits of DECT for radiotherapy applications will be discussed.
The focus will be on application for treatment planning in proton therapy, namely the individual prediction of tissue’s stopping power relative to water (SPR) as an alternative to the standard approach using a generic look-up table (HLUT). The manifold information gathered by two CT scans with different X-ray spectra allow for a patient-specific and direct calculation of relative electron density and SPR [1,2]. This enables the consideration of intra- and inter-patient variabilities in CT-based SPR prediction and ultimately a more accurate range prediction. The talk will cover the validation of the SPR prediction accuracy in realistic ground-truth scenarios [3,4], the investigation of clinical relevant differences between the DECT-based and the standard HLUT-based SPR prediction in clinical patient data [5] as well as the status of its clinical implementation [6].
Furthermore, additional applications in radiotherapy, e.g. for photon treatment planning, delineating and material differentiating will be briefly discussed.

  • Invited lecture (Conferences)
    ESTRO 37, 20.-24.04.2018, Barcelona, España
  • Open Access Logo Abstract in refereed journal
    Radiotherapy and Oncology 127(2018), S289-S290
    DOI: 10.1016/S0167-8140(18)30854-5

Permalink: https://www.hzdr.de/publications/Publ-26585
Publ.-Id: 26585