Extremely lattice mismatched GaAs/InxGa1-xAs core/shell nanowires: coherent growth and strain distribution


Extremely lattice mismatched GaAs/InxGa1-xAs core/shell nanowires: coherent growth and strain distribution

Balaghi, L.; Hübner, R.; Bussone, G.; Grifone, R.; Grenzer, J.; Ghorbani Asl, M.; Krasheninnikov, A.; Hlawacek, G.; Schneider, H.; Helm, M.; Dimakis, E.

Compound semiconductors are versatile materials due to the possibility to tailor their (opto)electronic properties by selecting their composition appropriately. When grown heteroepitaxially, though, this possibility is constrained by the lattice mismatch with the substrate. InxGa1-xAs is a good example because it can have, depending on x, a suitable direct optical band gap for optoelectronic applications in the infrared (e.g. telecommunication wavelengths) or high electron mobility for high-speed transistors. However, the practical choices of x are limited by the available substrates, typically GaAs for low x or InP for x≈0.53.
Nanowires are a promising alternative for the realization of epitaxial heterostructures with high lattice mismatch due to their unique geometry and high surface-to-volume ratio. In addition, the possibility of monolithic integration in Si-CMOS platforms adds to their technological significance. In this work, we have investigated the growth of free-standing GaAs/InxGa1-xAs core/shell nanowires on Si(111) substrates by molecular beam epitaxy and the accommodation of lattice mismatch therein. Specifically, we have concentrated on highly lattice mismatched heterostructures (x=0.20-0.80) and very thin cores (diameter < 25 nm).
Self-catalyzed growth of very thin GaAs core nanowires with a sufficiently low number density (to avoid beam shadowing during the shell growth) was possible on native-oxide/Si(111) substrates, after an in situ treatment of the latter with Ga droplets. This resulted in zinc blende nanowires with their axis along the [111] crystallographic direction and six {1-10} sidewalls. Subsequently, conformal overgrowth of the InxGa1-xAs shell was obtained only under kinetically limited growth conditions that suppressed mismatch-induced bending phenomena. The strain in the core and the shell was studied systematically as a function of the shell composition and thickness. To that end, we used Raman scattering spectroscopy, transmission electron microscopy and (synchrotron/lab source) X-ray diffraction, and compared the results with theoretical predictions based on continuum elasticity and density functional theories. All findings point to the existence of anisotropic tensile strain in the core that increases (as quantified by Raman measurements) with increasing the shell thickness, whereas the corresponding compressive strain in the shell decreases to zero. Our work demonstrates the opportunity to grow not only relaxed InxGa1-xAs shells with high structural quality (as adopted from the GaAs core) in a wide, if not the whole, compositional range, but also highly strained (tensile) GaAs cores with (opto)electronic properties that remain to be explored.

Keywords: core/shell nanowire; strained core; relaxed shell

Related publications

  • Poster
    Nanowire Week 2017, 29.05.-02.06.2017, Lund, Sweden

Permalink: https://www.hzdr.de/publications/Publ-26650
Publ.-Id: 26650