Binding of Antimony to Natural Organic Matter in a Finish Mine-Water Influenced Peatland


Binding of Antimony to Natural Organic Matter in a Finish Mine-Water Influenced Peatland

Besold, J.; Eberle, A.; Kujala, K.; Kumar, N.; Scheinost, A. C.; Pacheco, L.; Fendorf, S.; Planer-Friedrich, B.

Antimony (Sb) is a toxic element typically of low natural abundance but human activities have led to highly elevated concentrations in many soils and sediments. Recently, natural organic matter (NOM) has been discussed as effective sink for arsenic [1] and first spectroscopic studies [2,3] indicated that sulfhydryl moieties of NOM also play an important role in controlling Sb mobility in wetland sediments. However, Sb speciation in NOM-rich wetlands has not yet been studied comprehensively and direct spectroscopic evidence for this sequestration mechanism is still lacking. In order to investigate the role of NOM for Sb sequestration, we used bulk Sb K-edge X-ray absorption fine structure spectroscopy (EXAFS) from a peatland in northern Finland which receives high Sb loads from an adjacent gold mine. Sampled peat cores were kept under argon atmosphere at cool and dark conditions until freeze-drying to prevent Sb speciation changes. The peat contained up to 52 % carbon and 265 mg/kg Sb (dry weight basis). Sulfur and iron contents ranged between 4 to 8 and 2 to 10 g/kg, respectively. Aqueous Sb concentrations decreased with lateral distance from the inflow from 190 µg/L in surface waters to 8 µg/L in 80 cm depth. Based on linear combination fitting of EXAFS spectra, we found Sb to be mainly coordinated to NOM moieties in all peat samples. At 10-20 cm depth, Sb was sorbed up to 47% to iron (hydr)oxides and with increasing depth, up to 50% of trivalent Sb was complexed tri-fold to sulfhydryl moieties of NOM. At these deep peat layers, Sb was up to 100% complexed to NOM. Our results show that sorption of Sb to particulate NOM can act as an important sequestration mechanism under sulfate reducing conditions and therefore strongly influences Sb mobility in the environment.

[1] Langner et al. (2012) Nat. Geosci. 5, 66-73. [2] Benett et al. (2017) Environ. Chem. 2017, 14, 345–349. [3] Arsic et al. (2018) Environ. Sci. Technol. 52, 1118-1127.

Keywords: antimony; arsenic; peat; organic matter; EXAFS; XANES

Related publications

  • Lecture (Conference)
    Goldschmidt Conference 2018, 12.-17.08.2018, Boston, U.S.A.

Permalink: https://www.hzdr.de/publications/Publ-27249
Publ.-Id: 27249