Crystal-field effects in the kagome antiferromagnet Ho3Ru4Al12


Crystal-field effects in the kagome antiferromagnet Ho3Ru4Al12

Gorbunov, D. I.; Nomura, T.; Ishii, I.; Henriques, M. S.; Andreev, A. V.; Doerr, M.; Stöter, T.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J.

In Ho3Ru4Al12, the Ho atoms form a distorted kagome lattice. We performed magnetization, magnetic-susceptibility, specific-heat, and ultrasound measurements on a single crystal. We find that the magnetic and magnetoelastic properties of Ho3Ru4Al12 result from an interplay between geometric frustration and crystalelectric-field (CEF) effects. The Ho atoms order antiferromagnetically at TN = 4.5 K with reduced magnetic moments. In applied field, the magnetization shows anomalies that can be explained by CEF level crossings. We propose a CEF level scheme for which the ground-state doublet and the first two excited singlets at about 2.7 K form a quasiquartet. Indirect interlevel transitions allow for a quadrupolar interaction. This interaction explains well changes in the elastic shear modulus C44 as a function of temperature and magnetic field.

Permalink: https://www.hzdr.de/publications/Publ-27473
Publ.-Id: 27473