Spintronics of thin film granular antiferromagnets


Spintronics of thin film granular antiferromagnets

Makarov, D.

Antiferromagnets have the potential to revolutionize spintronics due to their inherently magnetic-field stable magnetic order and high-frequency operation. There are already great advances in the field especially when bulk antiferromagnets are considered. The application potential of antiferromagnets can be explored in full only if they will be prepared in the way to be compatible with a conventional microelectronic processing. This necessarily requires the use of (i) thin film antiferromagnets and (ii) discovery of methods to address the order parameter and its modifications all-electrically.
With respect to the first challenge it is necessary to understand modifications of the magnetic properties and magneto-electric responses of thin film antiferromagnets with respect to their bulk counterparts. Typically, thin films possess grainy morphology. Hence, to determine their application potential, questions regarding the change of the intergranular exchange, criticality behavior and switching of the order parameter need to be answered. This topic will be illustrated on the specific example of thin film magnetoelectric collinear antiferromagnet α-Cr2O3 studied using zero-offset Hall magnetometry and NV microscopy [1].
To address the second challenge it is required to develop transport-based techniques to harness the responses of thin film antiferromagnets. This task is difficult as minute uncompensated surface magnetization of antiferromagnets needs to be detected, which imposes strict requirements to the sensitivity of the method. I will outline our developments of zero-offset anomalous Hall magnetometry [2] applied to study the physics of conventional metallic IrMn and insulating magnetoelectric Cr2O3 antiferromagnets.
The fundamental understanding of the magnetic microstructure of magnetoelectric α-Cr2O3 thin films and the possibility to read-out its antiferromagnetic order parameter all-electrically enabled the entirely new recording concept where a magnetoelectric memory cell can be addressed without using a ferromagnet. With this approach, we opened an appealing field of purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) [1]. The key performance parameters of the Cr2O3 based AF-MERAM will be highlighted.
The essence of the AF-MERAM concept is that the read out is realized by acquiring Hall effect measurements from a thin metal layer (e.g., Pt) in proximity with the insulating Cr2O3. While this approach provides a convenient all-electric way to interface with the antiferromagnetic material, the underlying mechanism is debated to be based on either spin Hall magnetoresistance (SMR) or proximity effect. By carrying out temperature dependent anomalous Hall and magnetoresistance measurements, we found out that the signal is dominated by the SMR with a clear presence of an additional contribution. The origin of this contribution might be related to the proximity effect. These preliminary experimental results will be put forth for the discussion as well.
[1] T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G. Schmidt, and D. Makarov, “Purely antiferromagnetic magnetoelectric random access memory”. Nature Communications 8, 13985 (2017).
[2] T. Kosub, M. Kopte, F. Radu, O. G. Schmidt, and D. Makarov, “All-Electric access to the magnetic-field-invariant magnetization of antiferromagnets”. Phys. Rev. Lett. 115, 097201 (2015).

Keywords: antiferromagnets; spintronics

Related publications

  • Invited lecture (Conferences)
    Joint European Magnetic Symposia 2018, 03.-07.09.2018, Mainz, Germany

Permalink: https://www.hzdr.de/publications/Publ-27540
Publ.-Id: 27540