Heavy metal biosorbents – New approaches for old problems


Heavy metal biosorbents – New approaches for old problems

Braun, R.; Matys, S.; Jain, R.; Schoenberger, N.; Lederer, F.; Pollmann, K.

Low concentrations of heavy metal ions are causing diverse problems from the environmental and economic viewpoints. Conventional metal processing is complicated, both from a technical and economic perspective with low heavy metal concentrations e.g. in mine tailing waste waters. Additionally, even in low concentrations particular heavy metal ions are highly toxic and do have a severe influence on environmental systems. Artificial peptides with special metal binding affinities are therefore a new, innovative challenger for conventional metal recovery methods. They combine high specificity and sensitivity and being biodegradable, they do not add additional environmental pressure, therefore they are of high potential both for geobiotechnology and bioremediation.
In the present study we aimed for the development of novel bio-based materials of peptidic nature for the recovery of cobalt and nickel. Combining Phage Surface Display Technology (PSD) with deep sequencing approaches, suitable sequences were identified and subsequently genetically optimized for heterologous expression, production and purification. Different methods were used for characterizing the peptide metal interaction, e.g. quartz crystal microbalance with dissipation monitoring (QCM-D), fast protein liquid chromatography (FPLC) and UV/Vis spectroscopy. The developed system can be adapted to many different purposes and desired materials and the identified motifs can provide information for a deeper understanding of bio-inorganic interactions, potentially leading to the discovery of novel metal-interacting biomolecules, e.g. enzymes and peptides.

  • Lecture (Conference)
    3rd Green & Sustainable Chemistry Conference, 13.-16.05.2018, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-27641
Publ.-Id: 27641