The Precession Dynamo Experiment at HZDR


The Precession Dynamo Experiment at HZDR

Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F.

Cosmic magnetic fields are ubiquitous phenomena that are observed on all scales, from planets and stars to galaxies and clusters of galaxies. The origin of these fields involves the formation of electrical currents by means of complex flows of conducting fluids or plasmas.
Fluid flow induced magnetic fields via this dynamo effect have also been observed in experiments, which, however, require considerable technical efforts due to the significantly smaller scales available in the laboratory. The project DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies) conducted at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) provides a new platform for a variety of liquid sodium experiments devoted to problems of geo- and astrophysical magnetohydrodynamics. The most ambitious experiment within this project is a precession driven dynamo experiment that currently is under construction and will consist of a cylinder filled with liquid sodium that simultaneously rotates around two axes. The experiment is motivated by the idea of a precession-driven flow as a complementary energy source for the geodynamo or the ancient lunar dynamo.
In our presentation we will address corresponding numerical and experimental examinations aimed at an optimization of the precession driven flow with regard to improve the dynamo process in the planned experiment. Both approaches show that in the strongly nonlinear regime the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves that arise from nonlinear self-interactions. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rm_crit ∼430, which is well within the range of the planned liquid sodium experiment.

Keywords: Dynamo; Precession; DRESDYN

  • Lecture (Conference)
    The Third Russian Conference on Magnetohydrodynamics, 18.-21.06.2018, Perm, Russia

Permalink: https://www.hzdr.de/publications/Publ-27645
Publ.-Id: 27645