Wetting fraction in a tubular reactor with solid foam packing and gas/liquid co-current downflow


Wetting fraction in a tubular reactor with solid foam packing and gas/liquid co-current downflow

Mohammmed, I.; Hampel, U.

The performance of fixed bed reactors with structured catalysts depends heavily on the gas-liquid-solid contacting pattern. For a broad range of flow conditions, the liquid phase does not cover the solid surface of the packing homogeneously, which is known as partial wetting. Wetting fraction in solid foams was obtained using a modified electrochemical measurement method with adaption of limiting current technique at different pre-wetting scenarios. The external wetting fraction, which is defined as fraction of the external solid foam area covered by the liquid phase to the total external solid foam area, is directly linked to the overall rate of reaction through the overall liquid mass transfer rate.
The wetting fraction decreased with an increase of the foam density, which was related to decreasing the struts’ thickness, for more foam surface area, and consequently decreasing the wetted area. Additionally, the results indicate that better distribution of liquid and increased wetting fraction occurred when applying a spray nozzle distributor. A new wetting correlation for solid foams is proposed to estimate the wetting fraction with consideration of foam morphology and flow regime.

Keywords: Multiphase; Solid Foam; Wetting; Electrocemical Methode; Gas/Liquid; Pre-wetting mode

Permalink: https://www.hzdr.de/publications/Publ-27739
Publ.-Id: 27739