64Cu-labeled bioconjugates based on triazacyclononane bifunctional chelators for radiopharmaceutical applications


64Cu-labeled bioconjugates based on triazacyclononane bifunctional chelators for radiopharmaceutical applications

Stephan, H.; Pant, K.; Joshi, T.; Zarschler, K.

The development of multi-functional complexing agents for radiometal nuclides for nuclear medical application represents an intensively studied and rapidly evolving field of research. In this context, multifunctionalisable ligands that can form highly stable metal complexes are of particular interest. Their use enables the simultaneous introduction of radiolabels for nuclear imaging and vector molecules for pharmaceutical targeting.1-2
The tridentate azamacrocycle 1,4,7-triazacyclononane (TACN) is one such ligand that is of special interest for the development of bifunctional chelating agents (BFCAs), TACN forms stable Cu(II)complexes and the azamacrocyclic ligand structure can be easily modified. The introduction of further donor groups on the ligand scaffold, such as pyridine units, significantly enhances the thermodynamic stability as well as the kinetic inertness of the Cu(II) complexes formed. These ligands mostly form Cu(II) complexes with square-pyramidal and distorted octahedral coordination geometry.
Examples of target-specific conjugates (peptides, antibody fragments) and bio(nano)materials equipped with appropriate BFCAs based on TACN (Figure 1), suitable for labeling with 64Cu, will be presented. This enables tumor imaging and biodistribution studies of the materials over a period of days via positron emission tomography (PET).

1. E.W. Price, C. Orvig, Chem. Soc. Rev. 2014, 43, 260. 2. G. Singh, M.D. Gott, H.-J. Pietzsch, H. Stephan, Nuclearmedicine, 2016, 55, 41.

  • Lecture (Conference)
    43rd International Conference on Coordination Chemistry, 30.07.-04.08.2018, Sendai, Japan

Permalink: https://www.hzdr.de/publications/Publ-27769
Publ.-Id: 27769