Terahertz pump-induced anisotropy and nonlinear susceptibility in graphene


Terahertz pump-induced anisotropy and nonlinear susceptibility in graphene

Schneider, H.; König-Otto, J. C.; Mittendorff, M.; Winzer, T.; Kadi, F.; Malic, E.; Knorr, A.; Wang, Y.; Belyanin, A.; Pashkin, A.; Helm, M.; Winnerl, S.

We report on investigations of the carrier dynamics in graphene close to the Dirac point by nonlinear terahertz spectroscopy. At terahertz frequencies and low temperatures, optical-phonon scattering is suppressed. In this case, the decay of the pump-induced anisotropy in the carrier distribution is observed to be very slow, long as several ps, which is theoretically explained by non-collinear Coulomb scattering. In Landau-quantized graphene, degenerate four-wave mixing experiments in resonance to the lowest Landau level transition allow us to investigate the induced coherent polarization and to compare its dependence on THz field strength and B-field detuning with theoretical expectations.

Keywords: graphene; nonlinear terahertz spectroscopy; nonlinear susceptibility; pump-probe

Related publications

  • Poster
    34-th International Conference on the Physics of Semiconductors (ICPS 2018), 29.07.-03.08.2018, Montpellier, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-27805
Publ.-Id: 27805