All-optical shaping of laser-driven proton beam profiles


All-optical shaping of laser-driven proton beam profiles

Ziegler, T.; Obst-Huebl, L.; Brack, F.-E.; Branco, J.; Bussmann, M.; Cowan, T. E.; Curry, C. B.; Fiuza, F.; Garten, M.; Gauthier, M.; Göde, S.; Glenzer, S. H.; Huebl, A.; Irman, A.; Kim, J. B.; Kluge, T.; Kraft, S.; Kroll, F.; Metzkes-Ng, J.; Pausch, R.; Prencipe, I.; Rehwald, M.; Rödel, C.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

Extreme field gradients intrinsic to relativistic laser plasma interactions enable compact MeV proton accelerators with unique bunch characteristics, yet complicate direct proton beam control. Only complex micro-engineering of the plasma accelerator itself and limited adoption of conventional beam optics, so far provided access to global beam parameters as direction and divergence. Here we present a novel, counter-intuitive, yet readily applicable all-optical approach to imprint detailed spatial information from the driving laser pulse to the proton bunch. In a series of experiments, the spatial profile of the energetic proton bunch was found to exhibit identical features as the fraction of the laser pulse passing around a target of limited size. The formation of quasi-static electric fields in the beam path by ionization of residual gas in the experimental chamber results in asynchronous information transfer between the laser pulse and the naturally delayed proton bunch. Essentially acting as a programmable memory, these fields provide access to a new level of proton beam manipulation.

  • Poster
    8th Conference of the International Committee on Ultrahigh Intensity Lasers, 09.-14.09.2018, Lindau, Germany
  • Lecture (Conference)
    SPIE Optics + Optoelectronics 2019, 01.-04.04.2019, Prag, Tschechische Republik

Permalink: https://www.hzdr.de/publications/Publ-27972
Publ.-Id: 27972