The role of fluid flow in heat and mass transport in Liquid Metal Batteries


The role of fluid flow in heat and mass transport in Liquid Metal Batteries

Personnettaz, P.; Landgraf, S.; Nimtz, M.; Weber, N.; Weier, T.

Liquid metal batteries (LMBs) are suggested as a promising energy storage technology. An LMB is a three liquid layers concentration cell: two liquid metal electrodes are divided by a molten salt electrolyte. The relatively simple composition and geometry, the occurrence of multi-physics phenomena and the completely liquid nature of the active material have made the LMB an interesting candidate for continuum mechanics studies, ranging from magnetohydrodynamics to transport phenomena, such as Marangoni convection. The cell is in fact subject to a simultaneous transport of charge, heat, mass and momentum together with electrochemical reactions. The fluid flow can be beneficial if it is able to enhance the mixing at the electrolyte interfaces, thereby preventing the formation of intermetallic solid phases. However, a vigorous flow can also be detrimental to the safe operation of the battery, leading to short circuit induced by the rupture of the thin electrolyte layer. In our work the attention is focused on the role of fluid flow in heat and mass transport.
Thermally driven convection is investigated in a three layer Li||Bi LMB with an extended version of the VOF solver multiphaseInterFOAM. A relevant flow is discovered in the pure negative electrode, however it is too weak to deform the liquid interface. Moreover mass transfer is studied in the positive electrode with a single-phase CFD solver. The presence of solutal convection is numerically confirmed during the charge of the cell. The flow structures and the effects on cell efficiency are presented, the modeling limitations and the future developments are discussed.

Keywords: LMB; mass transport; heat transfer; openFoam; CFD

  • Poster
    MHD Days and GDRI Dynamo Meeting, 26.-28.11.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28204
Publ.-Id: 28204