Bonding and stability analysis of tetravalent actinide and lanthanide complexes with N,O-donor ligands


Bonding and stability analysis of tetravalent actinide and lanthanide complexes with N,O-donor ligands

Kloditz, R.; Radoske, T.; Patzschke, M.; Stumpf, T.

The contribution of the f-orbitals leads to a very rich chemistry of the f-elements[1] where it is known that this contribution is less important for lanthanides. Of special interest is the influence of these orbitals on the bonding character of actinides and lanthanides with organic ligands reflecting natural binding motifs.
This study shows the different bonding behaviour of tetravalent actinide and lanthanide complexes with Schiff bases, like salen (see Fig. 1) and derivatives, by means of real-space bonding analysis. This includes the popular quantum theory of atoms in molecules (QTAIM), plots of the non-covalent interactions (NCI)[2] and density differences complemented by natural population analysis (NPA). Thermodynamic calculations on the stability of these complexes are done being a direct consequence of the different interaction strengths of the f-elements.
First studies reveal a strong interaction of the actinides, i.e. Th to Pu, with the oxygen of salen characterized by a high electron density concentration between the atoms. In contrast, the interaction between the actinides and the nitrogen of salen is much weaker.
By acquiring knowledge about the different behaviours of bonding and complexation it is possible to understand the chemical properties of the f-elements and predict yet unknown complexes.

Keywords: Bonding; Salen; Actinides; theoretical chemistry; DFT; QTAIM

  • Lecture (Conference)
    International Symposium on Nano and Supramolecular Chemistry, 09.-12.07.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28307
Publ.-Id: 28307