DNA Origami templated assembly of metallic nanowires


DNA Origami templated assembly of metallic nanowires

Bayrak, T.; Erbe, A.

The DNA origami method provides a programmable bottom up approach for creating nanostructures of any desired shape, which can be used as scaffolds for nano-electronics and nano-photonics device fabrications. This technique enables the precise positioning of metallic and semiconducting nanoparticles along the DNA nanostructures. In this study, DNA origami nanomolds1,2 and nanosheets are used for the fabrication of nano-electronic devices. To this end, electroless gold deposition is used to grow the AuNPs within the DNA origami nanomolds and nanosheets create eventually continues nanowires. In order to contact the fabricated nanostructues electrically, a method using electron-beam lithography was developed. The DNA origami nanomold and nanosheet based metallic wires were electrically characterized from room temperature down to 4.2K.
Temperature-dependent characterizations for four wires exhibiting different conductance at RT were performed in order to understand the dominant conductance mechanisms from RT to 4.2K. Two of these nanowires based on nanomold structure showed metallic conductance.1 The other wires deviated from pure metallic behavior and they showed thermionic, hopping and tunneling charge transport mechanism.

Related publications

  • Lecture (Conference)
    PhD Seminar HZDR, 07.05.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28368
Publ.-Id: 28368