Vacancy-mediated magnetic phase-transitions


Vacancy-mediated magnetic phase-transitions

Liedke, M. O.; Butterling, M.; Quintana, A.; Menéndez, E.; Ehrler, J.; Bali, R.; Hirschmann, E.; Sireus, V.; Nogués, J.; Sort, J.; Wagner, A.

Two thin film systems exhibiting vacancy mediated magnetic phase transitions will be discussed in detail, i.e., Co3O4 and Fe60Al40.
In applications, substituting electric currents, which are nowadays used to operate spintronic devices, with electric fields, would result in a reduction of both the energy consumption and cost [1]. Co3O4 is a candidate for a tunable, non-volatile energy-efficient functional material whose magnetic properties can be controlled by electric voltage. In our current investigations the as-grown Co3O4 films consist of a paramagnetic (PM) phase only, which is transformed to a ferromagnetic (FM) state by electrolyte-gated and defect-mediated O and Co transport. A negative voltage reduces Co3O4 to Co (FM: ON), resulting in a phase separated material with Co- and O-rich regions. Applying a positive bias, the process is reversed oxidizing Co back to Co3O4 (PM: OFF). We will show that atoms migration is driven by rather complex vacancy states and a clear increase of the grain boundaries volume after negative biasing assists to O transport. Moreover, concomitantly with the PM phase transition due to the positive biasing the structural defects picture reverses to a large extent as well, which manifests as reduction in volume of both vacancy clusters and grain boundaries.
B2-Fe60Al40 phase is paramagnetic, and strong ferromagnetism can be induced via disordering to the A2-Fe60Al40 phase [2]. Disordering implies the formation of anti-site defects [3], which correlates with an increased Fe coordination. The concentration and size of open volume defects can play an important role in reordering kinetics. Three different initial order states have been investigated: (i) as-grown, partially disordered Fe60Al40, (ii) the as-grown films after Ne+ irradiation, and (iii) Ne-irradiated B2-Fe60Al40. Since, reordering directly affects magnetization saturation; the extent of the diffusion process can be traced via magnetometry at slightly elevated temperature of 400 K. We show that immobile large vacancy clusters with a high thermal activation barrier are dominant in the as-grown film and hinder ordering. Ion irradiation breaks down these pinning sites, thereby strongly accelerating thermal diffusion and reordering. These results provide insights into thermal reordering processes in binary alloys, and the consequent effect on magnetic properties. Doppler broadening and positron annihilation lifetime spectroscopy have been used as a probe for both electric field driven ionic transport of Co and O via different type of defects in Co3O4 systems as well as vacancy-mediated ordering in Fe60Al40.
[1] Y. Shiota, et al. Nature Mater. 11, 39 (2012). [2] M.O. Liedke, et al., J. Appl. Phys. 117, 163908 (2015).
[3] R. Bali, et al., Nano Lett. 14, 435 (2014).

Keywords: magnetism; positron; ion; irradiation; phase transitions; defects; electrical fields

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    18th International Conference on Positron Annihilation (ICPA-18), 19.08.2018, Orlando, USA

Permalink: https://www.hzdr.de/publications/Publ-28783