Towards best practice guidelines for Euler-Euler simulations of poly-disperse bubbly flows


Towards best practice guidelines for Euler-Euler simulations of poly-disperse bubbly flows

Lucas, D.; Liao, Y.; Rzehak, R.; Krepper, E.

Poly-disperse bubbly flows are involved in normal operation as well as in accident scenarios of Light Water Reactors. There are many activities to qualify CFD-methods for the simulation of safety-relevant processes. However, due to the complexity of such flows many details have to be carefully considered to define a proper setup for such simulations. The present paper aims at the establishment of a guideline how to prepare and conduct such a simulation as well as to evaluate the simulation results according to the best practice. The procedure has to start with an analysis of the expected flow situation, flow parameters and observed phenomena. Accordingly a classification should be done. Beside boundary conditions, the numerical grid, the time stepping and other issues a careful selection of the modelling framework (e.g. inclusion of a population balance, two- or multi-field approach) and the closure models has to be done based on the previous analysis. A set of well suited closure models is defined by the so-called baseline model for poly-disperse flows. Numerical convergence has to be checked throughout the simulation. For the comparison with experimental data possible uncertainties of the input data used and the experimental data used for comparison have to be considered. Besides the presentation of the state of the art best practice guidelines also their limitation and requirements for future research are discussed.

Keywords: CFD; bubbly flow; Euler-Euler; best practice guidelines

  • Contribution to proceedings
    The 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), 18.-22.08.2019, Portland, OR, USA
  • Lecture (Conference)
    The 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), 18.-22.08.2019, Portland, OR, USA

Permalink: https://www.hzdr.de/publications/Publ-28996