Modelling high resolution XANES for nuclear materials


Modelling high resolution XANES for nuclear materials

Amidani, L.; Pidchenko, I.; Kvashnina, K.

X-ray Absorption Spectroscopy (XAS) is an invaluable tool in nuclear material research, allowing to probe the oxidation state and the local coordination of a selected atomic species. The first part of the spectrum, the X-ray Near Edge Structure (XANES), is less exploited than the Extended X-ray Absorption Fine Structure (EXAFS). However XANES conceals a wealth of information on the electronic structure and the local geometry around the absorber. Nowadays important progresses in the interpretation of XANES have been made thanks to i) the development of dedicated ab-initio codes using powerful computational resources and ii) the use of high resolution XANES, which is especially advantageous for actinides.
We present here an example of how to extracted valuable information from XANES. We performed a systematic study of U L₃ edge XANES for U⁵⁺ and U⁶⁺ in different local coordination. It is well known that the presence uranyl bonds gives a characteristic feature in the post-edge of U L₃ XANES and it has been observed experimentally that this feature shifts to lower energy when going from the uranyl to the uranate coordination. We found that in U⁶⁺ and U⁵⁺ mixed systems the U⁵⁺ in octahedral coordination gives a characteristic shoulder just before the uranyl feature due to the splitting of the 6d DOS from the octahedral crystal field. We think that the shift of the uranyl feature going to uranate configuration indeed points to the presence of U⁵⁺.

Related publications

  • Lecture (Conference)
    E-MRS spring meeting, 27.-31.05.2019, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-29089
Publ.-Id: 29089