Curvilinear magnetism


Curvilinear magnetism

Makarov, D.

There is one aspect, which is in common to the majority of fundamentally appealing and technologically relevant novel magnetic materials, namely their non-collinear magnetic textures like spin spirals, chiral domain walls or skyrmions [1]. These textures are typically driven by the Dzyaloshinskii-Moriya interaction (DMI). Recently, curvature effects emerged as a novel mean to design chiral magnetic properties by relying on extrinsic parameters, e.g. geometry of thin films [2]. In particular, novel effects occur when the magnetization is modulated by curvature leading to new magnetization configurations and is implications on the spin dynamics due to topological constraints. Advances in this novel field solely rely on the understanding of the fundamentals behind the modifications of magnetic responses of 3D-curved magnetic thin films [3,4] and nanowires [5]. The lack of an inversion symmetry and the emergence of a curvature induced effective anisotropy and DMI are characteristic of curved surfaces, leading to curvature-driven magnetochiral effects and topologically induced magnetization patterning [6,7]. The application potential of 3D-shaped objects is currently being explored as mechanically reshapeable magnetic field sensorics [8] for flexible interactive electronics [9,10], spin-wave filters and high-speed racetrack memory devices [11]. The fundamentals as well as application relevant aspects of curvilinear nanomagnets will be covered in this presentation.
References:
[1] “The 2017 Magnetism Roadmap”, D. Sander et al., J. Phys. D 50, 363001 (2017).
[2] “Magnetism in curved geometries”, R. Streubel, et al., J. Phys. D 49, 363001 (2016).
[3] “Curvature Effects in Thin Magnetic Shells”, Y. Gaididei et al., Phys. Rev. Lett. 112, 257203 (2014).
[4] “Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices”, V. Kravchuk et al., Phys. Rev. Lett. 120, 067201 (2018).
[5] “Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality”, O. M. Volkov et al., Scientific Reports 8, 866 (2018).
[6] “Coupling of Chiralities in Spin and Physical Spaces: The Möbius Ring as a Case Study”, O. V. Pylypovskyi et al., Phys. Rev. Lett. 114, 197204 (2015).
[7] “Curvature-Induced Asymmetric Spin-Wave Dispersion”, J. A. Otalora et al., Phys. Rev. Lett. 117, 227203 (2016).
[8] “Shapeable magnetoelectronics”, D.Makarov et al., Appl. Phys. Rev. 3, 011101 (2016).
[9] “Magnetosensitive e-skins with directional perception for augmented reality”, S. Canon Bermudez et al., Science Advances 4, eaao2623 (2018).
[10] “Electronic-skin compasses for geomagnetic field driven artificial magnetoreception and interactive electronics”, S. Canon Bermudez et al., Nature Electronics 1, 589 (2018).
[11] “Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires”, M. Yan et al., Phys. Rev. Lett. 104, 057201 (2010).

Keywords: curvature effects in magnetism; curved magnetic thin films

Related publications

  • Invited lecture (Conferences)
    6th International Conference from Nanoparticles and Nanomaterials to Nanodevices and Nanosystems, 30.06.-03.07.2019, Corfu, Greece

Permalink: https://www.hzdr.de/publications/Publ-29107
Publ.-Id: 29107