Electromagnetic flow excitation in a liquid metal volume using a Helmholtz-like coil setup


Electromagnetic flow excitation in a liquid metal volume using a Helmholtz-like coil setup

Jüstel, P.; Röhrborn, S.; Schindler, F.; Galindo, V.; Stefani, F.

We present first results of our experiment involving electromagnetic forcing of a liquid metal volume. The experiment consist of a cylinder filled with eutectic GaInSn alloy and two magnetic coils placed on opposite sides of the cylinder. An alternating current in the coils excites Lorentz forces in the fluid, generating a flow field. Using ultrasound doppler velocimetry (UDV), we mapped this flow field. Maximum velocities of a few centimetres per second were reached. Numerical studies of the problem were also conducted and show good agreement. As a next step, the experimental setup shall be used to periodically disturb a Rayleigh-Bénard convection. The Rayleigh-Bénard flow structure occurs, when a layer of fluid is heated from below. The resulting flow is a convection roll about a horizontal axis. Point of interest is a possible resonance effect between the introduced forces and this flow structure.

Keywords: Electromagnetic forcing; liquid metal; Rayleigh-Bénard convection; resonance

  • Poster
    9th European Postgraduate Fluid Dynamics Conference, 16.07.2019, Ilmenau, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29182
Publ.-Id: 29182