Numerical simulation of an electromagnetic flow excitation in a liquid metal volume using OpenFOAM


Numerical simulation of an electromagnetic flow excitation in a liquid metal volume using OpenFOAM

Röhrborn, S.; Jüstel, P.; Schindler, F.; Galindo, V.; Stefani, F.

To prepare an experiment on the potential resonance effect between the Rayleigh-Bénard convection and weak tidal forcing in a liquid metal, the influence of electromagnetic forcing on the eutectic metal Ga-In-Sn simulated in OpenFOAM will be the main topic of this work [1].
A modulated tidal m=2 Lorentz forcing will be produced by two opposing Helmholtz-like coils outside a Ga-In-Sn filled cylinder with an aspect ratio of one. Considering future analyses with additional Rayleigh-Bénard convection two Cu-plates installed at the bottom and the top of the volume are also taken into account for the simulation of the AC magnetic field. With a small magnetic flux density of a few mT a flow speed up to several centimeters per second can be produced. The results of the numerical simulations will be compared with experimental data.

Keywords: Magnetohydrodynamics; OpenFOAM; Rayleigh-Bénard convection; electromagnetic forcing; liquid metal

  • Lecture (Conference)
    9th European Postgraduate Fluid Dynamics Conference, 16.-19.07.2019, Ilmenau, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29183
Publ.-Id: 29183