THEREDA - Achievements, present activities, and future developments


THEREDA - Achievements, present activities, and future developments

Moog, H. C.; Altmaier, M.; Bok, F.; Brendler, V.; Freyer, D.; Gaona, X.; Marquardt, C.; Richter, A.; Scharge, T.; Seher, H.; Thoenen, T.; Voigt, W.

INTRODUCTION
Five institutions are actively maintaining the thermodynamic reference database THEREDA aiming at the calculation of solubilities in high-saline solutions. The database is designed for applications in the context of the disposal of radioactive waste in rock salt formations and clay formations featuring solutions with a higher ionic strength [1]. The project is striving to provide an internally consistent set of data, formatted for the use by several widely-used geochemical codes. With the focus on high ionic strength systems, THEREDA complements other database projects focussing on low-saline solutions, such as THERMOCHIMIE [2] or the PSI/Nagra Chemical Thermodynamic Data Base [3].
In practical terms, work for THEREDA comprises several aspects. Most importantly, the database is continuously maintained and extended, based on annual contributions to the project. Other aspects concern the implementation of internal calculation routines, export functions and measures for quality assurance.

RECENT ACTIVITIES
Data releases
In 2018 a new release (R-12) was issued covering phosphate in high-saline solutions [4-5]. Pitzer interaction coefficients were optimized using osmotic coefficients, activity coefficients, and solubility data in binary and ternary systems. To test the obtained database, experimental data from quaternary systems were successfully modelled.
Supplementary to the phosphate release, an earlier uranium release was upgraded by adding several solid phases with phosphate (R-09.1). Available experimental data for respective aqueous complexes with phosphate in high-saline solution are currently under inspection.

CURRENT ACTIVITIES
Data releases
THEREDA is working on new thermodynamic data sets, in part as extensions to existing releases, and in part representing new systems, hitherto not covered by THEREDA. In short, the systems currently in preparation are:

  • Solubility of molecular oxygen (polythermal)
  • Se(+VI,+IV,0,-II) – Na, K, Mg, Ca – Cl, SO4 – H2O (partially polythermal)
  • Solubility of carbonates up to 100°C (upgrade for R-03)
  • Extensions for the systems Na, Mg, Cl, OH- - H2O (Sorel phases)
  • Cs – K, Na, Mg, Ca, – Cl, SO4 – H2O (polythermal upgrade for R-05)
  • Rb - K, Na, Mg, Ca, – Cl, SO4 – H2O (25°C)
  • U(VI) hydrolysis and solubility in NaCl, KCl and MgCl2 systems (25°C, upgrade of R-09.1)
  • Implementation of CEMDATA 18 [8]; will not work with GWB and TOUGHREACT as they cannot handle solid solutions yet.

Preparation of new release mode
THEREDA ensures that all issued parameter files yield the results as laid out in the release papers available at the project website. To optimize the workload, we will abstain from producing release papers in the future and establish a new procedure for data releases, which ensures a high quality of issued parameter files. Future data releases will move along the following steps.

  • 1. addition and modification of data sets in THEREDA;
  • 2. “feature freeze” of the database: no new data sets are added, and no existing data sets modified;
  • 3. All test calculations (at present 192) are automated for all supported codes, producing (at present 1131) individual results to be compared with the ones from previous releases;
  • 4. If significant deviations occur, “debugging” and repetition of test calculations is started.
5. Release of one cumulative parameter file (covering all supported systems) for each supported code.
Supported codes
Due to a significantly decreasing number of downloads, the support for EQ3/6 has been abandoned. GEM-Selektor [9] is now able to import the generic JSON-export from THEREDA. As to GWB beside the traditional “Oct84” the “Jul17” format is supported.
At present we are working on the support for TOUGHREACT [10].
Assessment of current state of THEREDA
By the end of the year the management board of THEREDA is required to submit an assessment as to whether the database, related to supported systems, still represents the state-of-the-art, or to which extent updates are appropriate.
CONCLUSION
THEREDA aims for implementing additional thermodynamic data (Pitzer) for radionuclides and key matrix elements in future data releases. While THEREDA is particularly focusing on Germany, it is open for international exchange and exploiting synergies with the international scientific/technical community.
ACKNOWLEDGMENTS
THEREDA is funded by the German “Bundesgesellschaft für Endlagerung (BGE)”, contract number 45162393 (8998-3).
REFERENCES
1. H. C. MOOG et al.: Disposal of Nuclear Waste in Host Rock formations featuring high-saline solutions - Implementation of a Thermodynamic Reference Database (THEREDA). Appl. Geochem., 55, 72-84 (2015).
2. E. GIFFAUT et al.: Andra thermodynamic data for performance assessment: ThermoChimie. Appl. Geochem., 49, 225–236 (2014).
3. T. THOENEN et al.: The PSI/Nagra Chemical Thermodynamic Database 12/07. PSI Bericht Nr. 14-04, Paul Scherrer Institut, ISSN 1019-0643 (2014). https://www.psi.ch/en/les/database
4. T. SCHARGE et al.: Thermodynamic modelling of high salinary phosphate solutions. I. Binary systems. J. Chem. Thermodynamics, 64, 249–256 (2013).
5. T. SCHARGE et al.: Thermodynamic modeling of high salinary phosphate solutions II. Ternary and higher systems. J. Chem. Thermodynamics, 80, 172-183 (2015).
6. A. P. SOLOV’JEV et al.: Rastvorimost‘ v ctevernych vzainych vodnych sistemach iz chloridov i fosfatov natrija i kalija pri 25°C, Sb. Naucn. Tr. Jarosl. Gos. Ped. Inst., 164, 136-142 (1977).
7. G. BRUNISHOLZ et al.: Contribution à L'étude du système quinaire H+-Na+-K+-Cl--PO43--H2O II. Le diagramme de solubilité du système quaternaire Na+-K+-Cl--H2PO4--H2O, Helv. Chim. Acta, 46, 2575-2587 (1963).
8. B. LOTHENBACH et al.: Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res., 115, 472-506 (2019).
9. D. A. KULIK et al.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comp. Geosc., 17, 1-24 (2013).
10: TIANFU XU et al.: TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comp.Geosc., 32, 145-165 (2006).

Keywords: THEREDA; Database; Geochemical Modelling; Thermodynamic; Nuclear Waste Repository; Pitzer

  • Lecture (Conference)
    Actinide Brine Chemistry (ABC-Salt) VI Workshop 2019, 25.-26.06.2019, Karlsruhe, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29292