Formation of Néel Type Skyrmions in an Antidot Lattice with Perpendicular Magnetic Anisotropy


Formation of Néel Type Skyrmions in an Antidot Lattice with Perpendicular Magnetic Anisotropy

Saha, S.; Zelent, M.; Finizio, S.; Mruczkiewicz, M.; Tacchi, S.; Suszka, A. K.; Wintz, S.; Bingham, N. S.; Raabe, J.; Krawczyk, M.; Heyderman, L. J.

Magnetic skyrmions are particle-like chiral spin textures found in a magnetic film with out-of-plane anisotropy and are considered to be potential candidates as information carriers in next generation data storage devices. Despite intense research into the nature of skyrmions and their dynamic properties, there are several key challenges that still need to be addressed. In particular, the outstanding issues are the reproducible generation, stabilization and confinement of skyrmions at room temperature. Here, we present a method for the capture of nanometer sized magnetic skyrmions in an array of magnetic topological defects in the form of an antidot lattice. With micromagnetic simulations, we elucidate the skyrmion formation in the antidot lattice and show that the capture is dependent on the antidot lattice parameters. This behavior is confirmed with scanning transmission x-ray microscopy measurements. This demonstration that a magnetic antidot lattice can be implemented as a host to capture skyrmions provides a new platform for experimental investigations of skyrmions and skyrmion based devices.

Keywords: skyrmion

Permalink: https://www.hzdr.de/publications/Publ-29296
Publ.-Id: 29296