Lift Forces on Solid Spherical Particles in Unbounded Flows


Lift Forces on Solid Spherical Particles in Unbounded Flows

Shi, P.; Rzehak, R.

The present work is concerned with the lift forces acting on particles immersed in an unbounded fluid. Both mechanisms due to rotation of the particle and vorticity of the fluid flow are considered. Focus is on solid spherical particles at Reynolds numbers up to 103 which are relevant for particulate flows in chemical and minerals engineering. A comprehensive review of existing results from analytical, numerical, and experimental studies is given. In particular in the simulation area many new data have appeared in the past 10 years since the earlier review of Loth [AIAA Journal 46 (2008), 801–809]. The available correlations are critically assessed by comparison to data from experiment and direct numerical simulation. Based on the comparison new correlations are proposed and gaps or inconsistencies in the data are identified. The case of wall-bounded flows will be considered in a sequel.

Keywords: lift force; particles; shear flow; particle rotation; correlation

Permalink: https://www.hzdr.de/publications/Publ-29402
Publ.-Id: 29402