Comparison of Gas-Liquid Flow Characteristics in Geometrically Different Swirl Generating Devices


Comparison of Gas-Liquid Flow Characteristics in Geometrically Different Swirl Generating Devices

Putra, R. A.; Neumann-Kipping, M.; Schäfer, T.; Lucas, D.

The gas-liquid flow characteristics for the blade, the single and the double-helical swirl elements were numerically investigated and compared in this work. The Euler-Euler model assuming bi-modal bubble size distributions was used. The experiment conducted in a vertical pipe equipped with a static blade swirl element is used as the basis for the CFD simulations. In the experiment, the high-resolution gamma-ray computed tomography (HireCT) was used to measure the gas volume fractions at several planes within the blade swirl element. The resulting calculated profiles of the pressure, liquid and gas velocities, as well as the gas fraction, show a large influence of the swirl elements geometry. The evolution and the characteristic of the calculated gas/liquid phase distributions in different measurement planes are found to be unique for each type of swirl elements. A single gas core in the center of the pipe is observed from the simulation of the blade element while multiple cores are observed from the simulation of the single and double helix elements. The cross-sectional gas distribution downstream the single and double helical elements change drastically within a relatively short distance downstream the elements. In contrast, the single gas core downstream the blade element is more stable.

Keywords: Swirling flow; Multiphase flow; Inline separator; Static mixer; CFD simulation, Euler-Euler

Permalink: https://www.hzdr.de/publications/Publ-29809
Publ.-Id: 29809