Relative Stability of Actinide(IV) Bissalen Complexes


Relative Stability of Actinide(IV) Bissalen Complexes

Radoske, T.; Schöne, S.; Kloditz, R.; März, J.; Stumpf, T.; Ikeda-Ohno, A.

Schiff bases of salen-type have a wide range of applications and have proven to be a versatile ligand system for the investigation of complexation behavior. In particular, due to its hetero N/O-donor coordination properties, the salen ligands are often considered as a simplified analog of naturally-occuring organic ligands, which have potential implications for the migration behavior of radionuclides under geochemical conditions We have investigated the complexation behavior of salen ligands (L, H2salen = N,N’-bis(salicyliden)ethylenediamine) towards tetravalent metal cations and synthesized a series of complexes of tetravalent actinides (Th, U, Np, and Pu) as well as analogous tetravalent metals (Zr, Ce, and Hf). In all cases, the ligand forms bissalen ML2 complexes (M = metal). When the ML2 compound is treated with an equimolar amount of the metal tetrachloride, some metals also form M:L = 1:1 complexes with additional two Cl- in the primary coordination shell to form MLCl2. Based on this observation, we assume a trilateral equilibrium between the starting materials of metal tetrachlorides, the 1:1, and the 1:2 complex (Scheme 1), being similar to the study by Calderazzo et al.[1] This equilibrium holds even if ML2 is insoluble in the reaction medium and, therefore, we can apply the exchange reactions to determine the relative stability of the An(IV)-bissalen complexes when more than one types of metal are used. The relative stability of the complexes can then be directly compared to the results from quantum chemical calculations based on DFT. Hence, this study aims to understand the reaction mechanism and stability of salen complexes with a series of tetravalent metals, in particular tetravalent actinides (An(IV)).

  • Lecture (Conference)
    Fachtagung Nuklearchemie, 25.-27.09.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29838
Publ.-Id: 29838