Towards Real-time Data Processing using FPGA Technology for High-speed Data Acquisition System at MHz Repetition Rates


Towards Real-time Data Processing using FPGA Technology for High-speed Data Acquisition System at MHz Repetition Rates

Bawatna, M.; Arnold, A.; Green, B. W.; Deinert, J.-C.; Kovalev, S.

Accelerator-based light sources, in particular, those based on linear accelerators, are intrinsically less stable than lasers or other more conventional light sources be-cause of their large scale. In order to achieve optimal data quality, the properties of each light pulse need to be de-tected and implemented into the analysis of each experi-ment. Such schemes are of particular advantage in 4th gen-eration light sources based on superconducting radiofre-quency (SRF) technology, since here the combination of pulse -resolved detection schemes with high -repetition-rate is particularly fruitful. Implementation of several different pur pose -built CMOS linear array detector will enable to perform arrival-time measurements at MHz repetition rates. An architecture based on FPGA technology will al-low an online analysis of the measured data at MHz repe-tition rate and will decrease the amount of data throughput and disk capacity for storing the data by orders of magni-tude. In this contribution, we will outline how the pulse-resolved data acquisition scheme of the TELBE user facil-ity shall be upgraded to allow operation at MHz repetition rates and sub-femtosecond timing precision.

Keywords: Real-Time Data Processing; High-speed Data Acquisition System; High Repetition Rates

Related publications

  • Open Access Logo Contribution to proceedings
    The 19th International Conference on RF Superconductivity (SRF2019), 23.-30.06.2019, Dresden, Germany
    Proceedings of SRF 2019, JACoW: JACoW, 978-3-95450-211-0, 907-912
    DOI: 10.18429/JACoW-SRF2019-THP029

Permalink: https://www.hzdr.de/publications/Publ-29938
Publ.-Id: 29938