Controlled inline fluid separation based on smart process tomography sensors


Controlled inline fluid separation based on smart process tomography sensors

Sahovic, B.; Atmani, H.; Sattar, M. A.; Garcia, M. M.; Schleicher, E.; Legendre, D.; Climent, E.; Zamanski, R.; Pedrono, A.; Babout, L.; Banasiak, R.; Portela, L.; Hampel, U.

Today’s mechanical fluid separators in industry are mostly operated without any control to maintain efficient separation for varying inlet conditions. Controlling inline fluid separators, on the other hand, is challenging for two reasons: the process is very fast and measurements in the multiphase stream are difficult as conventional sensors typically fail here. With recent improvement of process tomography sensors alongside with an increase in processing power of smart computers, such sensors can now be potentially used in inline fluid separation. Within the European Innovative Training Network TOMOCON we develop concepts for tomography-controlled inline fluid separation. It comprises of electrical tomography and wire-mesh sensors, a fast and massive data processing and an appropriate control strategy to control the process via valve action or alternative actuation principles. Solutions and ideas presented in this paper base on process models derived from theoretical investigation, numerical simulations and analysis of experimental data.

Keywords: Inline fluid separation; CFD simulation; Wire-mesh sensor; Electrical tomography; Control systems

Permalink: https://www.hzdr.de/publications/Publ-29989