Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal- Organic Framework


Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal- Organic Framework

Arora, H.; Dong, R.; Venanzi, T.; Zscharschuch, J.; Schneider, H.; Helm, M.; Feng, X.; Cánovas, E.; Erbe, A.

Metal-organic frameworks (MOFs) are emerging as an appealing class of highly tailorable electrically-conducting materials with potential applications in opto-electronics. Yet, the realization of their proof-of-concept devices remains a daunting challenge, attributed to their poor electrical properties. Following our recent report on a semiconducting Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF with record-high mobility and band-like charge transport, here, we demonstrate Fe3(THT)2(NH4)3 MOF-based photodetector operating in photoconductive mode capable of detecting a broad wavelength excitation of charge carriers. The narrow IR bandgap of the active layer (~0.45 eV) constrains the performance of the photodetector at room temperature by band-to-band thermal. At 77 K, the device performance is significantly improved; two orders of magnitude higher voltage responsivity, lower noise equivalent power, and higher specific detectivity of 7×108 cm Hz1/2 W–1 are achieved under 785 nm excitation. These figures of merit are retained over the analyzed spectral region (400–1575 nm) and are commensurate to those obtained with the first demonstrations of graphene and black phosphorus based photodetectors. This work demonstrates the feasibility of integrating conjugated MOFs as an active element into broadband photodetectors, thus bridging the gap between materials’ synthesis and technological applications.

Keywords: metal-organic frameworks; broadband photodetectors; low-temperature photodetection; two-dimensional semiconductors; photosensitivity

Related publications

Permalink: https://www.hzdr.de/publications/Publ-30159
Publ.-Id: 30159