Using XFELs to Probe Extreme Magnetic Fields Inside Solid Targets Driven by Optical High Power Lasers at HiBEF


Using XFELs to Probe Extreme Magnetic Fields Inside Solid Targets Driven by Optical High Power Lasers at HiBEF

Huang, L.; Schlenvoigt, H.-P.; Takabe, H.; Cowan, T.

In this talk, we will firstly present a systematic study of the bulk magnetic field generation using particle-in-cell simulations, that we observe the effect of varying the laser and target parameters, including laser intensity, focal size, incident angle, preplasma scale length, target thickness and material, and experimental geometry. The simulation results suggest that the strongest magnetic field is generated with laser incident angles and preplasma scale lengths that maximize laser absorption efficiency. The simulations have also shown that the collisional ionization potential and model are critical to determining the structure and diffusion time of the self-generated magnetic fields. Then we will propose to probe the bulk magnetic fields inside the solid density plasmas by X-Ray polarimetry via Faraday rotation using an X-Ray free electron lasers (XFEL), taking its advantage of simultaneous high spatial-temporal resolution and several tens of micrometers attenuation length in solid. The synthetic simulations predict that the XFEL polarization is rotated by a few hundred micro-radians after penetrating through solid density plasmas which is feasible to be measured with X-Ray polarimetry.
With the results of this work, we are in an excellent position to maximize our chances of measuring laser generated magnetic fields using Faraday rotation at high power laser beamlines at XFELs. One of the first examples of this will be at the European XFEL-HED endstation, in the frame of Helmholtz International Beamline for Extreme Fields at the European XFEL (HiBEF) project, where a 7.5J/300TW high power laser has already installed as a permanent instrument. A dedicated beamtime at the European XFEL-HED endstation to investigate the performance of ultra-high purity X-ray polarimeters under the conditions of European XFEL source has already been scheduled in the end of May, 2019. This is expected to become the basis to probe the laser-driven ultra-strong magnetic fields inside the solid-density targets, accessed via plasma Faraday rotation and imaging polarimetry.

Keywords: magnetic field; X-Ray polarimetry; Faraday rotation; XFEL

  • Invited lecture (Conferences)
    The 4th International Conference on Matter and Radiation at Extremes (ICMRE 2019), 29.05.-02.06.2019, Hefei, China

Permalink: https://www.hzdr.de/publications/Publ-30488
Publ.-Id: 30488