Ion beam implanted Germanium nanowires fabricated by using electron beam lithography


Ion beam implanted Germanium nanowires fabricated by using electron beam lithography

Echresh, A.; Jazavandi Ghamsari, S.; Helm, M.; Rebohle, L.; Georgiev, Y.

Germanium (Ge) is a promising high mobility channel material for future nanoelectronic devices with a lower effective charge carrier mass than Silicon (Si), which results in a higher electron (×2) and hole (×4) mobility. Materials with high carrier mobility can enable increased integrated circuit functionality or reduced power consumption. Hence, Ge based nanoelectronic devices could offer improved performance at reduced power consumption compared to Si electronics. Doping or the introduction of impurity atoms allows the tuning of the electrical properties of the semiconductor material. Ion beam implantation is an industrial standard for semiconductor's doping as it can incorporate single ion species with a single energy in a highly controlled fashion. The destructive nature of ion implantation doping due to the deposited energy and resultant cascade of recoils within the nanowire volume requires a crystal recovery step such as an annealing process. In this work, Ge nanowires were first fabricated using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching. Then ion beam implantation was used to introduce phosphorous (P) dopant atoms into Ge nanowires. Afterwards, flash lamp annealing (FLA) was applied to recover the crystal structure of Ge nanowires and activate the dopant atoms. Micro-Raman spectroscopy spectra showed that, by increasing the fluency of ion implantation, the optical phonon mode of Ge peak was broadened asymmetrically. This is related to the Fano effect and shows that dopant atoms are placed in substitutional positions and are electrically activated. Moreover, we are designing three- and four-probe Hall Effect measurement configurations for single Ge nanowires to determine their mobility and carrier concentrations.

Related publications

  • Poster
    Towards Reality in Nanoscale Materials X, 14.-16.02.2019, Levi, Finland

Permalink: https://www.hzdr.de/publications/Publ-30495
Publ.-Id: 30495