SPCI-Reconstruction


SPCI-Reconstruction

Kornek, D.; Berthold, J.; Kögler, T.

Single plane Compton imaging (SPCI) is a novel approach to medical imaging of gamma radiation [1]. The possible range of applications includes nuclear imaging and range verification in proton therapy. For the purpose of image reconstruction, a software tool written in ROOT [2] and named SPCI-Reconstruction [3] has been developed. The implementation features the well-established MLEM algorithm for binned data [4] as well as a Monte-Carlo based algorithm called Origin Ensemble [5]. Given a precalculated system matrix and a file containing the measurements, the emission densities of the gamma radiation source can be backprojected into a voxel-based image space.

[1] Pausch G et al. A novel scheme of compton imaging for nuclear medicine. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).

[2] CERN. ROOT – Data Analysis Framework. Release 6.12/04 - 2017-12-13. https://root.cern.ch/content/release-61204.

[3] Kornek D. Anwendung von Maximum-Likelihood Expectation-Maximization und Origin Ensemble zur Rekonstruktion von Aktivitätsverteilungen beim Single Plane Compton Imaging (SPCI). Master's thesis. TU Dresden. 2019.

[4] Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982; 1(2):113-22.

[5] Sitek A. Representation of photon limited data in emission tomography using origin ensembles. Phys Med Biol. 2008 June; 53(12):3201-3216.

Keywords: single plane compton imaging; compton camera; image reconstruction; maximum-likelihood expectation-maximization; origin ensemble; nuclear medicine; range verification in particle therapy

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30631
Publ.-Id: 30631