A smart multi-plane detector design for ultrafast electron beam X-ray computed tomography


A smart multi-plane detector design for ultrafast electron beam X-ray computed tomography

Bieberle, A.; Windisch, D.; Iskander, K.; Bieberle, M.; Hampel, U.

In this paper, a novel concept for multi-plane ultrafast electron beam X-ray computed tomography (UFXCT) is presented. The concept is based on multi-plane electron beam scanning on a semi-transparent X-ray target and cuboid-shape scintillation detectors for radiation detection over an extended axial range. The optical part of the scintillation detector acts as both a scintillator and a light guide. With that, we achieve a low detector complexity and number of detector elements, overall power consumption and detector costs. We investigated the performance of this new concept with a prototypical detector module made of cerium doped lutetium yttrium orthosilicate (LYSO:Ce) as scintillator and an avalanche photodiode (APD) array. Thereby, we assessed two design variants: a monolithic LYSO bar detector and a sandwich detector made of multiple LYSO crystals and glass light-guides.

Keywords: Ultrafast computed tomography; 3D tomography; scintillation detectors

Involved research facilities

  • TOPFLOW Facility

Related publications

Permalink: https://www.hzdr.de/publications/Publ-30878