Logarithmic Elastic Response in the Dilute non-Kramers System Y1-xPrxIr2Zn20


Logarithmic Elastic Response in the Dilute non-Kramers System Y1-xPrxIr2Zn20

Yanagisawa, T.; Hidaka, H.; Amitsuka, H.; Zherlitsyn, S.; Wosnitza, J.; Yamane, Y.; Onimaru, T.

Ultrasonic investigations of the single-site quadrupolar Kondo effect in diluted Pr system Y0.966Pr0.034Ir2Zn20 are reported. The elastic constant (C11C12)/2 is measured down to ~40 mK using ultrasound for the dilute system Y0.966Pr0.034Ir2Zn20 and the pure compound Yir2Zn20. We found that the elastic constant (C11C12)/2 of the Pr-dilute system exhibits a logarithmic temperature dependence below T0 ∼ 0.3 K, where non-Fermi-liquid (NFL) behavior in the specific heat and electrical resistivity is observed. This logarithmic temperature variation manifested in the Γ3-symmetry quadrupolar susceptibility is consistent with the theoretical prediction of the quadrupolar Kondo effect by D. L. Cox [1]. On the other hand, the pure compound Yir2Zn20 without 4f-electron contributions shows nearly no change in its elastic constants evidencing negligible phonon contributions. In addition, clear acoustic de Haas-van Alphen (dHvA) oscillations in the elastic constant were detected for both compounds on applying magnetic field. This is mainly interpreted as contribution from the Fermi surface of Yir2Zn20.

Permalink: https://www.hzdr.de/publications/Publ-30951
Publ.-Id: 30951