Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration


Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration

Di Nora, V. A.; Fridman, E.; Nikitin, E.; Bilodid, Y.; Mikityuk, K.

This study presents an approach to the selection of optimal energy group structures for multi-group nodal diffusion analyses of Sodium-cooled Fast Reactor cores. The goal is to speed up calculations, particularly in transient calculations, while maintaining an acceptable accuracy of the results.
In Part I of the paper, possible time-savings due to collapsing of energy groups are evaluated using 24-group energy structure as a reference. Afterwards, focusing on energy structures with a number of groups leading to significant calculation speedups, optimal grid configurations are identified. Depending on a number of possible energy grid configurations to explore, the optimization is conducted by either a direct search or applying the simulated annealing method. Speedup and optimization studies are performed on a selected case of the Superphénix static neutronic benchmark by using the nodal diffusion DYN3D code. The results demonstrate noticeable improvements in DYN3D performance with a marginal deterioration of the accuracy.

Keywords: Serpent; XS condensation; energy structure optimization; simulated annealing

Related publications

Permalink: https://www.hzdr.de/publications/Publ-31688
Publ.-Id: 31688