Evolution of a strong electrovortex flow in a cylindrical cell


Evolution of a strong electrovortex flow in a cylindrical cell

Kolesnichenko, I.; Frick, P.; Eltishchev, V.; Mandrykin, S.; Stefani, F.

The mechanism of poloidal flow suppression in an electrovortex flow (EVF) is verified in a liquid metal experiment and supported by numerical simulations. Beyond a certain threshold of azimuthal forcing, a strong poloidal EVF flow develops only transiently, before the centrifugal forces of the slowly generated swirl compensate the EVF-driving forces. This result shows that EVFs can become of particular importance in large-scale liquid metal batteries, especially during the switch-on regime when the transient poloidal flows can be up to two orders of magnitude stronger than those expected in the saturated regime.

Keywords: electrovortex flow

Downloads

  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-32070
Publ.-Id: 32070