Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal


Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal

Kiriyama, H.; Pirozhkov, A. S.; Nishiuchi, M.; Fukuda, Y.; Sagisaka, A.; Kon, A.; Miyasaka, Y.; Ogura, K.; Dover, N. P.; Kondo, K.; Sakaki, H.; Koga, J. K.; Esirkepov, T. Z.; Huang, K.; Nakanii, N.; Kando, M.; Kondo, K.; Bock, S.; Ziegler, T.; Püschel, T.; Zeil, K.; Schramm, U.

Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.

Permalink: https://www.hzdr.de/publications/Publ-32175
Publ.-Id: 32175