Effects of geometry on curvilinear antiferromagnetic spin chains


Effects of geometry on curvilinear antiferromagnetic spin chains

Pylypovskyi, O.; Kononenko, D. Y.; Yershov, K.; Roessler, U. K.; Faßbender, J.; van den Brink, J.; Makarov, D.; Sheka, D.

Antiferromagnets are technologically promising materials for spintronic and spinorbirtonic devices [1]. An efficient manipulation of antiferromagnetic textures requires the presence of the Dzyaloshinskii-Moriya interaction (DMI), which is present in crystals of special symmetry, and thus limits the number of available materials. In contrast to antiferromagnets, it is already established that in ferromagnetic thin films and nanowires chiral responses can be tailored relying on curvilinear geometries [2]. Here, we explore geometry-induced effects in curvilinear antiferromagnets. We demonstrate theoretically that intrinsically achiral curvilinear antiferromagnetic spin chains behave as a biaxial chiral helimagnet with a curvature-tunable anisotropy and DMI [3]. The geometry-driven easy axis anisotropy determines the homogeneous antiferromagnetic state at low curvatures and the gap for spin waves. The geometry-driven DMI determines the helimagnetic phase transition and leads to the appearance of the region with the negative group velocity at the dispersion curve.

[1] V. Baltz et al., Rev. Mod. Phys. 90, 015005 (2018).
[2] R. Streubel et al., J. Phys. D.: Appl. Phys. 49, 363001 (2016).
[3] O. V. Pylypovskyi et al., Nano Lett. (2020) DOI: 10.1021/acs.nanolett.0c03246.

Keywords: spin chain; antiferromagnetism; Dzyaloshinskii-Moriya interaction; curvilinear magnetism

  • Lecture (Conference) (Online presentation)
    APS March Meeting 2021, 15.-19.03.2021, Online, USA

Permalink: https://www.hzdr.de/publications/Publ-32510
Publ.-Id: 32510