Detecting bacterial cell viability in few μl solutions from impedance measurements on silicon‐based biochips


Detecting bacterial cell viability in few μl solutions from impedance measurements on silicon‐based biochips

Bhat, V. J.; Vegesna, S. V.; Kiani, M.; Zhao, X.; Blaschke, D.; Du, N.; Vogel, M.; Kluge, S.; Raff, J.; Hubner, U.; Skorupa, I.; Rebohle, L.; Schmidt, H.

Using two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1–5 μL (with dead or live Gram‐positive Lysinibacillus sphaericus JG‐A12 cells to 20 μL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of L. sphaericus JG‐A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells. Dead L. sphaericus JG‐A12 cells have been obtained by adding 0.02 mg/mL of the antibiotics tetracycline and 0.1 mg/mL chloramphenicol to a batch with OD0.5 and by incubation for 24 h, 30 °C, 120 rpm in the dark. For impedance measurements, we have used batches with a cell density of 25.5 × 10⁸ cells/mL (OD8.5) and 270.0 × 10⁸ cells/mL (OD90.0). The impedance biochip PS5 can be used to detect the more resistive and less capacitive live L. sphaericus JG‐A12 cells. Also, the impedance biochip BS5 can be used to detect the less resistive and more capacitive dead L. sphaericus JG‐A12 cells. An outlook on the application of the impedance biochips for high‐throughput drug screening, e.g., against multi‐drug‐resistant Gram‐positive bacteria, is given.

Keywords: Cell viability; Dead bacterial cells; Dead bacterial cells; Impedance biochips; Live bacterial cells; Lysinibacillus sphaericus; Membrane potential

Related publications

Permalink: https://www.hzdr.de/publications/Publ-32782
Publ.-Id: 32782