Strong Binding of Noble Gases to [B₁₂X₁₁]⁻: a theoretical study


Strong Binding of Noble Gases to [B₁₂X₁₁]⁻: a theoretical study

Wöhner, K.; Wulf, T.; Vankova, N.; Heine, T.

We systematically explore the stability and properties of [B₁₂X₁₁NG]⁻ adducts resulting from the binding of noble gas atoms to anionic [B₁₂X₁₁]⁻ clusters in the gas phase of mass spectrometers. [B₁₂X₁₁]⁻ can be obtained by stripping one X⁻ off the icosahedral closo-dodecaborate dianion [B₁₂X₁₂]²⁻. We study the binding of the noble gas atoms He, Ne, Ar, Kr and Xe to [B₁₂X₁₁]⁻ with substituents X = F, Cl, Br, I, CN. While He cannot be captured by these clusters and Ne only binds at low temperatures, the complexes with the heavier noble gas atoms Ar, Kr and Xe show appreciable complexation energies and exceed 1 eV at room temperature in the case of [B₁₂(CN)₁₁Xe]⁻. The predicted B–NG equilibrium distance in the complexes with Ar, Kr and Xe is only 0.10 to 0.25 Å longer than the sum of the covalent radii of the two corresponding atoms, and a significant charge transfer from the noble gas atom to the icosahedral B₁₂ cage is observed.

Keywords: Boron; Anions; Complexation; Cluster chemistry; Group 17 compounds

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32852
Publ.-Id: 32852