Skin conformal and printable magnetoelectronics for human-machine interfaces and soft robotics


Skin conformal and printable magnetoelectronics for human-machine interfaces and soft robotics

Makarov, D.

Motion sensing is the primary task in numerous disciplines including industrial robotics, prosthetics, virtual and augmented reality appliances. In rigid electronics, rotations, displacements and vibrations are typically monitored using magnetic field sensors. Here, we will discuss the fabrication of flexible [1-3], stretchable [4,5] and printable [5] magnetoelectronic devices. The technology platform relies on high-performance magnetoresistive and Hall effect sensors deposited or printed on ultrathin polymeric foils. These skin conformal flexible and printable magnetosensitive elements enable touchless interactivity with our surroundings based on the interaction with magnetic fields [6], which is relevant for electronics skins [3,5], smart wearables [1,4,5], soft robotics [2] and human-machine interfaces [1,3-5,7].

[1] P. Makushko et al., “Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces”, Adv. Funct. Mater. 31, 2101089 (2021).

[2] M. Ha et al., “Reconfigurable Magnetic Origami Actuators with On-Board Sensing for Guided Assembly”, Adv. Mater. 33, 2008751 (2021).

[3] G. S. Canon Bermudez et al., “Electronic-skin compasses for geomagnetic field driven artificial magnetoreception and interactive electronics”, Nature Electronics 1, 589 (2018).

[4] G. S. Canon Bermudez et al., “Magnetosensitive e-skins with directional perception for augmented reality”, Science Advances 4, eaao2623 (2018).

[5] M. Ha et al., “Printable and Stretchable Giant Magnetoresistive Sensors for Highly Compliant and Skin-Conformal Electronics”, Adv. Mater. 33, 2005521 (2021).

[6] G. S. Canon Bermudez et al., “Magnetosensitive E-Skins for Interactive Devices”, Adv. Funct. Mater. 31, 2007788 (2021).

[7] J. Ge et al., “A bimodal soft electronic skin for tactile and touchless interaction in real time”, Nature Communications 10, 4405 (2019).

Keywords: flexible magnetic field sensors; printable magnetic field sensors; magnetic soft robots

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    International Intelligent Materials-IIM 2022, 29.06.-01.07.2022, Kiel, Germany

Permalink: https://www.hzdr.de/publications/Publ-33807