An Innovative bioleaching Approach for the Extraction of Valuable and Hazardous Elements from Mining Waste


An Innovative bioleaching Approach for the Extraction of Valuable and Hazardous Elements from Mining Waste

Opara, C.

The use of microorganisms and their products for the extraction of metals from low grade ores has proven overtime to be more economically viable than other extractive metallurgical processes such as pyrometallurgy. However, the most extensively studied microorganisms for bioleaching are the acidophilic Sulfur and/or Iron-oxidizing chemolithotrophs that are able to catalyze mineral dissolution at low pH. The use of acidophilic bacteria for bioleaching leads to the acidification of the environment as these activities are usually performed at pH ≤ 2. This could have a negative impact on the environment. We hereby propose the use of (halo)alkaliphilic and/or marine sulphur-oxidising microorganisms that live at less acidic, neutral or alkaline conditions for the bioleaching of metals from mining waste. This will prevent the acidification of the environment and save fresh water, as this bioleaching approach could be applicable in seawater. Bioleaching results with Thioclava electrotropha and Thioclava pacifica autotrophs seem promising, as up to 30% Co and 10% Cu, Pb, Zn, Cd, As, K and Mn were solubilised from a fresh waste rock sample. To optimize the bioleaching process, the interaction of these microorganisms with minerals will be studied. The tailing residues cleaned via this approach will be analyzed for subsequent valorization into various circular-economy applications such as inorganic polymers, green cements and ceramics.

Keywords: bioleaching; mine waste; sulfur-oxidizing bacteria

  • Open Access Logo Lecture (Conference) (Online presentation)
    8th International Conference on Microbial Communication for Young Scientists, 29.-31.03.2021, Jena, Germany

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34014
Publ.-Id: 34014