Energetic Au ion beam implantation of ZnO nanopillars for optical response modulation


Energetic Au ion beam implantation of ZnO nanopillars for optical response modulation

Macková, A.; Malinský, P.; Jagerová, A.; Mikšová, R.; Lalik, O.; Nekvindová, P.; Mistrík, J.; Marvan, P.; Sofer, Z.; Holý, V.; Schutter, J. D.; Kentsch, U.; Azarov, A.; Galeckas, A.

Nanopillars of ZnO were implanted with Au-400 keV ions at various ion fluences from 1 × 10¹⁵ cm⁻² to 1 × 10¹⁶ cm⁻² and subsequently annealed at 750 °C for 15 min in order to reduce the implantation damage and to support Au nanoparticle (NP) aggregation. It was found that implantation-induced effects and thermal effects influence the Au NP coalescence as well as the quality of the ZnO nanopillars. Rutherford Back-Scattering spectrometry (RBS) showed the broader Au-depth profiles than it was theoretically predicted, but the Au-concentration maximum agrees well with prediction taking into account the effective ZnO layer density. The implantation at the higher fluences induced the morphology modification of the nanopillar layer evidenced by RBS and scanning electron microscopy (SEM). An indirect evidence of this effect was given by optical ellipsometry due to gradual refractive index changes in the ZnO nanopillars with the increased Au-ion fluence. Optical characterization of the Au-implanted and annealed nanopillars performed by means of photoluminescence (PL) and diffuse-reflectance spectroscopy (DRS) evidenced the surface plasmon resonance (SPR) activity of the embedded Au NPs. The SPR-enhanced scattering and PL emission observed in the spectral range 500–650 nm are ascribed to Au NPs or more complex Au-clusters. In addition, the ellipsometry measurements of extinction coefficient are found to corroborate well results from DRS, both indicating increase of SPR effect with the increase of Au-ion fluence and after the post-annealing.

Keywords: ZnO nanopillars; Au nanoparticles; ion implantation; SPR; doped ZnO nanostructures

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34312
Publ.-Id: 34312