Neutron radiography of liquid drops ascending in a liquid metal


Neutron radiography of liquid drops ascending in a liquid metal

Lappan, T.; Sarma, M.; Trtik, P.; Heitkam, S.; Eckert, K.; Eckert, S.

Multiphase flows of dispersed gas bubbles and solid particles in liquid metals are hardly to investigate in situ in industrial-scale metallurgical reactors. Laboratory-scale model experiments with low-melting metal alloys have proven very beneficial for radiographic flow investigations. To extend previous experimental studies that were focussed on either bubble or particle flows in liquid gallium and its alloys, we used neutron radiography for visualising liq-uid-liquid two-phase flows of silicone oil drops in the eutectic gallium-tin alloy. We determined the average size of the ascending drops, measured the velocity of each drop along its motion path, and estimated dimensionless numbers to compare drop and bubble characteristics. Here, we exemplarily present the results for drops of 4 mm in diameter, which may serve as a valuable basis for future experiments and simulations with drops and particles in the liquid metal.

Keywords: drops; gallium; neutron radiography; single-particle tracking; two-phase flow

  • Lecture (Conference) (Online presentation)
    12th pamir International Conference on Fundamental and Applied MHD, 04.-08.07.2022, Kraków, Polska

Permalink: https://www.hzdr.de/publications/Publ-34723
Publ.-Id: 34723