Single-crystal epitaxial europium iron garnet films with strain-induced perpendicular magnetic anisotropy: Structural, strain, magnetic, and spin transport properties


Single-crystal epitaxial europium iron garnet films with strain-induced perpendicular magnetic anisotropy: Structural, strain, magnetic, and spin transport properties

Guo, M. X.; Cheng, C. K.; Liu, Y. C.; Wu, C. N.; Chen, W. N.; Chen, Y. T.; Wu, C. T.; Hsu, C. H.; Zhou, S.; Chang, C. F.; Tjeng, L. H.; Lee, S. F.; Pai, C. F.; Hong, M.; Kwo, J.

Single-crystal europium iron garnet (EuIG) thin films were epitaxially grown on gadolinium gallium garnet (GGG)(001) substrates using off-axis sputtering and showed strain-induced perpendicular magnetic anisotropy (PMA). By varying the sputtering conditions, we have tuned the europium/iron (Eu/Fe) composition ratios in the films to tailor the film strains. The films exhibited an extremely smooth, particle-free surface with a root-mean-square roughness as low as 0.1 nm, as observed by atomic force microscopy. High-resolution x-ray diffraction analysis and reciprocal space maps showed pseudomorphic film growth, a very smooth film/substrate interface, excellent film crystallinity with a rocking curve of 0.012° (ω scans), and an in-plane compressive strain without relaxation. In addition, spherical aberration-corrected scanning transmission electron microscopy showed an atomically abrupt interface between the EuIG film and GGG. The saturation magnetization (Ms) and coercive field (Hc) were measured using a vibrating sample magnetometer. The square-shaped out-of-plane M-H loops in conjunction with angle-dependent x-ray magnetic dichroism demonstrated the PMA in the films. The spin Hall magnetoresistance on Pt/EuIG samples was measured to obtain the PMA field strength (H⊥), which increases from 4.21 to 18.87 kOe with the increasing Eu/Fe ratio and in-plane compressive strain. We also measured spin transport in the Pt/EuIG bilayer structure and directly obtained the real part of spin mixing conductance to be 3.48×10^14Ω–1m–2. We demonstrated current-induced magnetization switching with a low critical switching current density of 3.5×10^6A/cm2, showing excellent potential for low-dissipation spintronic devices.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34806
Publ.-Id: 34806