Flexible and printed electronics: from interactive on-skin devices to bio/medical applications


Flexible and printed electronics: from interactive on-skin devices to bio/medical applications

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. We study fundamentals of 3D curved magnetic thin films [1] and explore their application potential for flexible electronics, eMobility and health. We put forth the concept of shapeable magnetoelectronics [2] for various applications ranging from automotive through consumer electronics to virtual and augmented reality applications [3]. These skin-conformal flexible and printable magnetosensitive elements enable touchless interactivity with our surroundings based on the interaction with magnetic fields, which is relevant for smart skins for human-machine interfaces [4-9] and soft robotics [10].
Highly flexible functional elements are demanded for bio/medical applications. We will introduce an implantable, multifunctional device on ultrathin polymeric foils for targeted thermal treatment of cancer [11] as well as a flexible light weight diagnostic platform based on highly sensitive Si nanowire field effect transistors revealing remarkable limit of detection at 40 pM for Avian Influenza Virus (AIV) subtype H1N1 DNA sequences [12].
For the emerging field of biosensing technologies, we developed droplet-based magnetofluidic platforms encompassing integrated novel functionalities [13] including analytics in a flow cytometry format [14], magnetic detection, barcoding and sorting of magnetically encoded emulsion droplets using rigid [15,16] and flexible [17] microfluidic devices. These features are crucial to address the needs of modern medical research, e.g. drug discovery.

[1] D. Makarov et al., Adv. Mater. (Review) 34, 2101758 (2022).
[2] D. Makarov et al., Appl. Phys. Rev. (Review) 3, 011101 (2016).
[3] G. S. Cañón Bermúdez et al., Adv. Funct. Mater. (Review) 31, 2007788 (2021).
[4] G. S. Cañón Bermúdez et al., Science Advances 4, eaao2623 (2018).
[5] G. S. Cañón Bermúdez et al., Nature Electronics 1, 589 (2018).
[6] J. Ge et al., Nature Communications 10, 4405 (2019).
[7] M. Ha et al., Adv. Mater. 33, 2005521 (2021).
[8] P. Makushko et al., Adv. Funct. Mater. 31, 2101089 (2021).
[9] S. Li et al., Nano Energy 92, 106754 (2022).
[10] M. Ha et al., Adv. Mater. 33, 2008751 (2021).
[11] G. S. Cañón Bermúdez et al., Adv. Eng. Mater. 21, 1900407 (2019).
[12] D. Karnaushenko et al., Adv. Healthcare Mater. 4, 1517 (2015).
[13] G. Lin et al., Lab Chip (Review) 17, 1884 (2017).
[14] G. Lin et al., Small 12, 4553 (2016).
[15] J. Schütt et al., ACS Omega 5, 20609 (2020).
[16] W. Song et al., ACS Sensors 2, 1839 (2017).
[17] G. Lin et al., Lab Chip 14, 4050 (2014).

Keywords: curvature effects in magnetism; flexible magnetic field sensors; printed magnetic field sensors; lab-on-chip applications; skin-conformal electronics

Related publications

  • Invited lecture (Conferences)
    Joint European Magnetic Symposia (JEMS), 24.-29.07.2022, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-34972
Publ.-Id: 34972