Neutronenradiographie des anisotropen Drainageflusses in Schaum


Neutronenradiographie des anisotropen Drainageflusses in Schaum

Skrypnik, A.; Trtik, P.; Cole, K.; Lappan, T.; Brito-Parada, P. R.; Neethling, S. J.; Eckert, K.; Heitkam, S.

Liquid drainage through foam is driven by gravity, capillary, and, to a lesser extent, viscous forces.
In the of stress on the foam, the liquid distributes uniformly, however, imposed stress changes the
alignment of the foam’s structural elements. Previous numerical simulations [1] predicted that a vertical
drainage flow will be deflected horizontally if the foam is sheared. We investigated such phenomena by
measuring the distribution of liquid fraction within a foam formed in a flat rectangular cell. The foam was
subjected to shear stress under a forced liquid supply at the top of the cell. Two dimensional neutron
radiography images of stress-free and sheared foam were analyzed to extract measurements of liquid
content. Deflections in the distribution of the drainage liquid were detected, and found to be positively
correlated with increasing foam shear. To the best of our knowledge, this is the first experimental
observation of anisotropic drainage in a liquid foam.

  • Lecture (Conference)
    Fachtagung "Experimentelle Strömungsmechanik", 06.-08.09.2022, Ilmenau, Germany

Permalink: https://www.hzdr.de/publications/Publ-35549
Publ.-Id: 35549