Unravelling the Deformation of Paleoproterozoic Marbles and Zn-Pb Ore Bodies by Combining 3D-Photogeology and Hyperspectral Data (Black Angel Mine, Central West Greenland)


Unravelling the Deformation of Paleoproterozoic Marbles and Zn-Pb Ore Bodies by Combining 3D-Photogeology and Hyperspectral Data (Black Angel Mine, Central West Greenland)

Guarnieri, P.; Thiele, S. T.; Baker, N.; Sørensen, E. V.; Kirsch, M.; Lorenz, S.; Rosa, D.; Unger, G.; Zimmermann, R.

The Black Angel Zn-Pb ore deposit is hosted in folded Paleoproterozoic marbles of the Mârmorilik Formation. It is exposed in the southern part of the steep and inaccessible alpine terrain of the Rinkian Orogen, in central West Greenland. Drill-core data integrated with 3D-photogeology and hyperspectral imagery of the rock face allow us to identify stratigraphic units and extract structural information that contains the geological setting of this important deposit. The integrated stratigraphy distinguishes chemical/mineralogical contrast within lithologies dominated by minerals that are difficult to distinguish with the naked eye, with a similar color of dolomitic and scapolite-rich marbles and calcitic, graphite-rich marbles. These results strengthen our understanding of the deformation style in the marbles and allow a subdivision between evaporite-carbonate platform facies and carbonate slope facies. Ore formation appears to have been mainly controlled by stratigraphy, with mineralizing fluids accumulating within permeable carbonate platform facies underneath carbonate slope facies and shales as cap rock. Later, folding and shearing were responsible for the remobilization and improvement of ore grades along the axial planes of shear folds. The contact between dolomitic scapolite-rich and calcitic graphite-rich marbles probably represents a direct stratigraphic marker, recognizable in the drill-cores, to be addressed for further 3D-modeling and exploration in this area.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-35837